BIOCONVERSION OF MONENSIN BY A SOIL BACTERIUM, SEBEKIA BENIHANA

F. VAUFREY, A. M. DELORT, G. JEMINET and G. DAUPHIN*

Laboratoire de Chimie Organique Biologique, U.R.A. 485 du C.N.R.S., Université Blaise Pascal, Clermont-Ferrand, 63177 Aubiere Cedex - France

(Received for publication February 26, 1990)

Monensin (1), a carboxylic polyether antibiotic has been extensively used as an anticoccidial agent for poultry¹⁾ and to improve the efficiency of feed utilization in ruminant animals²⁾. Despite the considerable economic and environmental implications of this extensive use in animals, few data are available on the detoxification processes of such molecules. We described recently the bioconversion of nigericin³⁾ by Sebekia benihana NRRL 11111⁴⁾. This soil bacterium was found to convert nigericin in three successive steps, giving compounds which had no ionophoric and antibiotic properties.

S. benihana also proved to be efficient on

monensin, which was converted to three major compounds in similar fashion. This paper deals with the determination of the structures of these three products, and of their antibiotic activity and ionophoric properties.

Monensin (40 mg in 2 ml ethanol solution) was bioconverted by whole cells of S. benihana NRRL 11111 grown in 100 ml TYG medium as previously described for nigericin³⁾, quantitatively into M_1 after 24 hours; M_1 was then oxidized to M_2 and M₃ after 120 hours (Fig. 1). The bioconversion products were detected and isolated as previously described³; their Rf values were as follow; monensin 0.84, M₁ 0.56, M₂ 0.26, M₃ 0.20. (TLC: CHCl₃ - MeOH, 9:1).

The structures of M₁, M₂ and M₃ were identified by IR, FAB-MS and NMR spectroscopy³⁾. Monensin, M₁, M₂ and M₃ have similar IR spectra indicating that the main skeleton of monensin is maintained. FAB (+) experiments confirmed the MW's of monensin derivatives as acid form $(M+H)^+$: M₁, 673.5; M₂, 689.6; M₃, 689.5). FAB (-) experiments confirmed the MW's of M₁ and $M_2((M-H)^-: M_1, 671.3; M_2, 687.3)$. In conclusion, FAB-MS clearly shows the presence of an open terminal ring for M1, M2 and M3 and an additional

Monensin (1)

1189

oxidation for M₂ and M₃. The structures proposed for M1, M2 and M3 were finally elucidated by NMR analysis. The general strategy followed for this purpose has been described previously⁵). ¹³C and ¹H chemical shifts of M_1 , M_2 and M_3 were compared with those of monensin. The main significant differences are reported in Tables 1 and 2. Omitted signals were very similar and in agreement with those described earlier for monensin (acid form)^{6~8)} suggesting that most of the monensin skeleton is unchanged, especially the carboxyl terminus of the molecule including the A and B rings. The NMR changes observed for M₁ and M₂ compared to monensin are very similar to those observed for bioconverted analogous products of nigericin (N_1 and N_2) compared to it³). For M_3 a new situation is encountered compared to the nigericin biotransformation: H_{3OA} and H_{3OB} (ring C) present in monensin disappear in favor of a single proton which is shifted to the CH(O) region; similarly C-30 is shifted to the same direction. Neighboring atoms (17 and 15) are also markedly affected. As previously observed for nigericin, the bioconversion of monensin consists of two types of reaction:

i) Reduction: The opening of the terminal ring results from an enzymatic reduction of the δ hydroxy-ketone which is in equilibrium with its hemiketal tautomeric form. A chemical reduction of monensin performed with NaBH₄ confirmed the presence of a reduced product. It led to two diasteroisomers M_1 (30%) and DM_1 (70%) that were purified by column chromatography on silica gel using a MeOH-CHCl₃ gradient $(4 \sim 6.5\%)$ MeOH in CHCl₃). M_1 was eluted first (Rf: M_1 , 0.56; DM₁, 0.47; TLC: CHCl₃ - MeOH, 9:1). They could be identified by ¹³C NMR and direct analogy with N_1 and DN_1 obtained from reduction of nigericin³⁾. The same ¹³C signals are shifted (C-25: M₁ 76.58; DM₁, 73.7. C-27: M₁, 17.60; DM₁, 15.60). Consequently, the same stereochemistry of C-25 could be attributed to M_1 and N_1 , *i.e.*, S configuration.

ii) Oxidation: M_2 is very similar to N_2^{3} , the same CH₃ is oxidized to CH₂OH, probably by a similar enzymatic process. The reaction does not continue to complete oxidation to COOH as observed for N₃. In the case of monensin, a new site of oxidation is found involving the ethyl group. These two oxidations proceed in parallel giving M₂ and M₃. The stereochemistry of the – CHOH – CH₃ remains to be solved. As M₃ is no longer an antibiotic (see later), no further investigations were performed.

The antibiotic properties of the bioconversion

Table 1. Comparison of ${}^{13}C$ chemical shifts (δ) of monensin and free acids of M₁, M₂ and M₃ in CDCl₃.

Carbon No.	Monensin	M ₁	M ₂	M ₃
E ring				
25	97.20	76.58	76.88	76.82
26	68.00	64.31	64.48	64.46
27	16.40	17.60	17.52	17.67
24	35.80	34.85	34.52	34.94
23	36.80	38.54	37.98	39.23
22	32.90	34.16	34.68	34.42
21	74.00	77.41	77.94	77.90
D ring				
29	15.80	15.72	62.05	16.42
18	34.60	35.12	44.59	35.67
19	31.60	33.22	29.37	33.63
20	77.40	77.86	79.82	77.97
C ring				
30	31.20	30.30	25.30	86.21
31	8.60	8.19	7.49	18.17
15	32.70	30.90	31.86	28.37
(17) ^a	(85.10)	(85.48)	(83.48)	(71.11)

^a Belongs to ring D but influenced by variation in ethyl group 30.

Table 2. Comparison of ¹H chemical shifts (δ) of monensin with M₁, M₂ and M₃ as free acids in CDCl₃.

Proton No.	Monensin	M ₁	M ₂	M 3
E ring				
25	No signal	3.49	3.50	3.51
24	1.49	1.80	1.99	1.75
23B	1.35	0.89	0.89	0.89
23A	1.50	1.85	1.92	2.01
D ring				
29	0.94	0.88	3.94~3.79	1.01
18	2.24	2.23	2.80	2.28
C ring				
30	1.57~1.57	1.46~1.46	1.72~1.55	3.82
31	0.97	0.90	0.92	1.20
15B	1.37	1.67	1.88	2.02

products M_1 , M_2 and M_3 were evaluated classically by using the conventional dilution method with *Bacillus cereus* ATCC 14579 in Mueller-Hinton broth at pH 7. In spite of the opening of the terminal ring, M_1 is still an antibiotic with an MIC (3.12 µg/ml) only twice that of monensin (1.56 µg/ml). The situation is very different from that encountered for the bioconverted analogous product (N₁) whose MIC was fifty times higher that of nigericin. On the other hand, M₂ and M₃ are no longer antibiotics though their terminal ring is similar to M₁. Indeed, M₂ and M₃ have additional CH₂OH groups resulting from the oxidation process. As a consequence it is likely that the lipophilic external envelope of these molecules is too hydrophilic to be integrated in the cell membrane. The partition is in favor of the aqueous phase of the culture medium. This corresponds to a classical detoxification process of lipophilic compounds; it was already observed for nigericin³) and grisorixin^{9~11}.

The complexation constants K_1 of monensin derivatives (expressed as their logarithm) for Na⁺ and K⁺ were determined by the classical method of extraction in a biphasic system¹²), giving the following results; monensin Na⁺: -3.80 ± 0.2 , K⁺: -4.92 ± 0.1 ; M₁ Na⁺: -5.22 ± 0.2 , K⁺: -6.47 ± 0.1 . Consequently M₁ still complexes with Na⁺ and K⁺ though less efficiently than monensin; the selectivity Na⁺ > K⁺ is maintained as well. We have shown previously¹³ that N₁, in contrast, does not complex with K⁺ and is no longer antibiotic. To explain these differences obviously linked to the structure of the bioconverted products M₁ and N₁, additional investigations are needed.

In conclusion this study of bioconversion by *S*. *benihana* affords interesting experimental results.

i) The detoxification process is clearly associated with the modification of the amphiphilic balance of the ionophores rather than with a change in the complexing site and shown from the difference between M_1 and N_1 .

ii) It is possible to open the monensin terminal hemiketal ring without markedly upsetting the well organized complexing cavity of the natural metabolite.

References

- OSBORNE, M.W.; J. WENGER, F. KOVZELOVE, R. BOYD & M. ZANKO: Chapter 7. Effects of lasalocid and monensin on chickens. *In* Polyether Antibiotics. Naturally Occurring Acid Ionophores. Volume 1: Biology. *Ed.*, J. W. WESTLEY, pp. 333~340, Marcel Dekker, Inc., 1982
- LIU, C.: Chapter 3. Microbial aspects of polyether antibiotics: Activity, production, and biosynthesis. *In* Polyether Antibiotics. Naturally Occurring Acid Ionophores. Volume 1: Biology. *Ed.*, J. W. WESTLEY, pp. 43~102, Marcel Dekker, Inc., 1982

- DELORT, A. M.; G. JEMINET, M. SANCELME & G. DAUPHIN: Microbial conversion of nigericin in three successive steps, by *Sebekia benihana*. J. Antibiotics 41: 916~924, 1988
- SEBEK, O. K. & L. A. DOLAK: Microbial hydroxylation of novobiocin and related compounds. J. Antibiotics 37: 136~142, 1984
- 5) CUER, A.; G. DAUPHIN, G. JEMINET, J. C. BELOEIL & J. Y. LALLEMAND: Complete assignment of the ¹H and ¹³C spectra of the grisorixin potassium salt by means of two dimensional NMR methods. Application to the solution conformation of the molecule. Nouv. J. Chim. 9: 437~441, 1985
- 6) BOLTE, J.; S. CAFFAREL-MENDES, G. DAUPHIN, C. DEMUYNCK & G. JEMINET: Transport de Na⁺ et K⁺, à travers une membrane liquide épaisse, par la monensine et son dérivé chloro-4 phényluréthane. Bull. Soc. Chem. 1986: 370~374, 1986
- SETO, H. & N. ŌTAKE: Chapter 6. ¹³C NMR spectra of polyether antibiotics. *In* Polyether Antibiotics. Naturally Ocurring Acid Ionophores. Volume 2. Chemistry. *Ed.*, J. W. WESTLEY, pp. 335~400, Marcel Dekker, Inc., 1982
- ANTEUNIS, M. J. O. & N. A. RODIOS: Solution conformation of monensin free acid, a typical representative of the polyetherin antibiotics. Bioorg. Chem. 7: 47~55, 1978
- CUER, A.; G. DAUPHIN & J. C. BELOEIL: Microbial conversion of grisorixin, a monovalent cation ionophorous antibiotic. J. Antibiotics 36: 20~26, 1983
- CUER, A. & G. DAUPHIN: Microbial conversion of grisorixin: Conformational properties of a bioconversion product. Tetrahedron 41: 3725~3736, 1985
- CUER, A. & G. DAUPHIN: Structure and conformation of bioconversion products of a carboxylic ionophorous antibiotic, grisorixin, by means of twodimensional nuclear magnetic resonance. J. Chem. Soc. Perkin Trans. II 1986: 295~299, 1986
- PFEIFFER, D. R. & H. A. LARDY: Ionophore A23187: The effect of H⁺ concentration complex formation with divalent and monovalent cations and the demonstration of K⁺ transport in mitochondria mediated by A23187. Biochemistry 15: 935~943, 1976
- 13) DAVID, L.; M. CHAPEL, J. GANDREUIL, G. JEMINET & R. DURAND: The importance of the hemi-acetal group for the ionophoric properties of nigericin. Experientia 35: 1562~1563, 1979